If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-10t-61=0
a = 1; b = -10; c = -61;
Δ = b2-4ac
Δ = -102-4·1·(-61)
Δ = 344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{344}=\sqrt{4*86}=\sqrt{4}*\sqrt{86}=2\sqrt{86}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{86}}{2*1}=\frac{10-2\sqrt{86}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{86}}{2*1}=\frac{10+2\sqrt{86}}{2} $
| x4+8x2+16=0 | | X^2+20x-621=0 | | 184-7(2x+5)=30+6+(x-1)-6 | | X^2+20x+621=0 | | -6+-5=a | | x = 8 2 x | | 36+2x=-2(x-6) | | -22+2a=-2(a+3) | | 44-14a/11=66-5a/22 | | 1-3x+8=3-5x | | X-(.26x)=333 | | -7+1y=4y-13 | | B*c=49013097612394769029490172718549904894512229397554192728421144594199924266108554867072309427245683047899330910437063566920631409587597648028530390537321833586932154826418623745447415233064651576713296432401009120951145189215111381856191111064030214726 | | 6x^2-9=3+4x^2 | | -8(-8(1+7n)=-8 | | p-4=-7+5+2p+6 | | -2x-4=5x+12 | | |x|=15-4x | | 4(3x-2)=3(3x-2) | | 30-2x=2(3x+3 | | 4a-3+8=-6-7a | | -5y+8=3y-+10 | | -7/11a+2=3-5/22a | | (25+43)/2x7=x | | z-9=17 | | 6r^2-36r=96 | | -3/5x=-7 | | F(x)=6x^2-8 | | 12x+38+28=90 | | y+17=-3 | | 2x+5=5x-25=180 | | 3.8^x=39 |